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1 Introduction

1.1 History

ISFI is a knowledged-based automatic programming system that has been developed at MITRE during

the past 5 years. The ISFI system is deeply rooted in Brown's thesis [1]. This thesis claims that networks

of constraints are an appropriate knowledge representation tool for many domains and illustrates a

number of techniques such as propagation and transformation that facilitate inference in constraint

networks as a method for code synthesis. One of the primary differences from other work on constraint

networks [2] is that in writing programs using ISFI, one can be said to "compile" networks of constraints

whereas other constraint satisfaction schemes "interpret" the networks.

The implementation for the thesis was limited to synthesizing numerical programs in MacLisp. The

ISFI project seeks to extend the previous work in two important ways. First, objects other than numbers

are considered. Real world objects have structure that may change during the execution of the synthesized

program; one must provide for dealing with these changes. Secondly, the ISFI system incorporates a

general view of programs and programming languages. As such, the system deals with a more general

model of programming languages instead of exploiting the strengths of a single language.

1.2 Overview

In the view of the designers and implementors of ISFI, an automatic programming system is one that

accepts as input a non-procedural specification of behavior and produces as output a program that

exhibits the specified behavior. Simply put, the eventual user of such a system should be able to state

what he wants to happen (without telling how it should happen - that's programming) and be given a

program that makes it happen. Our primary goal is to improve software maintenance, including changes

in requirements, debugging of existing features, and the addition of new features. The emphasis is on the

incremental changes to a software system rather than on the first time production. Producing any large,

complicated system for the first time will remain a demanding task [3,4]. Our approach emphasizes the

use of various knowledge bases and the ability to account for how and why those knowledge sources were

used. We feel such information is essential to the process of software maintenance.

In the automatic programming domain, the world is described by specifying the existence of objects

with specific properties, attributes, and relations to other objects. Behavior of any system takes two

forms: 1) the input/output behavior and 2) the non-monotonic behavior. In the first form, some input

objects are used to compute some output objects (the output objects are created according to the

relationships given by the program specification; see [51 for philosophical discussion). In the second form,

some set of relationships among objects is changed. For our model, this change can always be described

by adding (deleting) an object to (from) some property or attribute of a given object. These two forms



of behavior are not mutually exclusive.

Functionally, ISFI accepts a set of objects and relationships as the specification for the program. Some

of the relationships are treated as true and are used in the computation of objects that are generated by

the synthesized program. Other relationships are declared in such a way that the synthesized program

causes them to become true; these relationships specify side effects. ISFI's output is a program in the

target language that exhibits the desired behavior both in performing side effects and in computing

objects for output.

Given this model of the world, we see that the input/output behavior of a program can be specified

simply by indicating that certain objects are either inputs or outputs of a program. The relationships

specified among all of the involved objects can be used to compute the output objects. For non-monotonic

behavior, however, where relationships among objects must be changed by the synthesized program, we

need some mechanism for stating that at a given time a relationship is true and that at some later time

it becomes false. Thus, we need to state a temporal ordering for the veracity of relationships among

objects. To fill this need, a finite state diagram is used, where objects exist in states and directed

transitions between states provide the time ordering.

A point to emphasize is that ISFI is not tied to any given target language. The representations of

objects, their behavior, and the description of the synthesized program are all free of language depen-

dent considerations. Only a very small section of ISFI's code generator actually deals with the target

language's syntax, naming conventions, scoping, parameter passing, and other considerations. Currently,

ISFI can generate code in Common-Lisp and C.

2 Terminology

2.1 Objects

First of all, ISFI needs to deal with classes of objects as well as individual objects. A hierarchy is useful

in organizing the object classes. For simplicity, we limit ourselves to a strict hierarchy (A Kind Of tree

or AKO tree) [6] rather than pursue a lattice structure (tangled hierarchy) [7,8] that allows an object

class to inherit from multiple immediate ancestors. A strict hierarchy allows us to state facts like, "An

integer is a kind of number," but prevents statements such as, "An elephant is a kind of four legged

animal and a kind of gray object."

A mechanism called roles is used to describe attributes, parts, properties, and qualities of objects. It

is similar to mechanisms in other frame-like systems. A role of an object (class) is "filled" by one or more

objects of some designated object class, indicating that the given attribute has a value related to the

object filling the role. Thus, to resolve our multiple hierarchies problem we could say that, An elephant
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is a kind of four legged animal1 and that, Elephants have a color role that is filled by some object whose

value indicates gray. This method of declaring one principal hierarchy and describing other attributes by

a separate mechanism can be somewhat arbitrary but is usually adequate.

Each class of objects has associated with it some number of roles that declare potentially relevant

attributes, parts, properties, and qualities for each object in the class. These roles will also pertain to

each object of each sub-class of the original class. In this way, roles are inherited and we can discuss, for

example, the engine sizes of trucks as well as those of cars, buses, and other types of motor vehicles.

We also can specialize a role of an object class when it inherits the role from a class higher in the

AKO tree. For example, a DATSUN-280Z object class may have a role called ENGINE-TYPE (filled by

an object from the possible ENGINE-TYPES). A sub-class may be called DATSUN-280ZX-TURBO and

expect an object of class TURBO-ENGINES (a sub-class of ENGINE-TYPES) in its ENGINE-TYPE role.

For the sub-class, more information is introduced for the role although we would like to consider it to be

the same role as that used by the super-class.

Roles manifest themselves in ISFI as role descriptors which are associated with two object classes:

the assoc-class and the member-class. The assoc-class represents the object class that has the part,

attribute, property, or quality described by the role descriptor. The member-class represents the object

class that fills the role.

An important distinction between ISFI's role descriptors and the attributes, slots, parts, etc., that

are found in most other knowledge-based systems is that role descriptors combine in a single mechanism

the notions of parts, attributes, slots, etc., whereas many other systems tend to treat these separately

(see [9,10,11,6]). Another important distinction is that role descriptors may contain either an object or a

collection of objects. Conceptually, a role that holds a single object is a specia! case where the collection

is of size one. Collections allow the intelligent cooperation between data structures that hold multiple

objects of the same type and real world objects that have multiple-valued attributes. For example, a

dog kennel usually has more than one dog. In ISFI we can express that the role descriptor DOGS is

a collection of objects of class DOG. Further, we can now index and order this collection when it is

implemented on a data structure that supports indexing and ordering.

2.2 Relationships

Now that we know approximately what objects are and how they are described, we will consider the

ways in which we wish to deal with relationships among objects. Two requirements must be met for the

relationships in the system we are discussing. First of all, the relationships mechanism should be general.

I In this paper, any text that appears in sam-serf font is an example of an element of an SFI speclfcation or of the

knowledge bases of ISF. Any text that appears in typewriter font is an example of code that ISF generated or something

that it uses during code generation, i.e., code templates.
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This requirement stems from the fact that programs are written for nearly every possible domain. The

second property that relationships must have is that they must be transformable into some operations

upon the involved objects.

As objects are of certain classes, constraints (representing relationships) are of certain consraint

types. Constraint types are not, however, arranged in any sort of hierarchy. Constraint types contain

information about the type of objects that the constraint relates and a number of constraint laws that

specify how some objects can be computed from other objects involved in the relationship. One can think

of constraint laws as computational interpretations of constraints. Constraint laws may also specify how

to perform certain side-effects.

As mentioned in the previous section, roles are used to state an implicit relationship between two

objects (two objects are related by the fact that one fills a role of the other). Sometimes it is necessary

to make this whole/part relationship explicit, so there is also an IN-ROLE constraint type.

A special relationship that deserves attention is that of equality. Specifically, there are five kinds of

equality in ISFI:

1. Two objects are equal if they are the same identical object. This relationship is implicit.

2. Two objects are equal if they are connected to each other by the EQUALITY constraint.

3. Two objects may be viewed as the same object but be mapped to different data structures in the

synthesized program. In these cases, there may or may not be a set of constraints that defines a

conversion between the two representations.

4. Two objects are not equal in either of the first two ways but have enough roles in common to be

considered equal. For example, the many incarnations of Morris the Cat and Lassie were always

treated as being equal to the other incarnations. Deciding when "enough" roles are the same is

another area of consideration all to itself. This topic will not be covered in this paper.

5. Two objects are equal but exist in different contexts.

Only two representations of equality are available in the ISFI system - wires and the equality con-

straint. Because the equality constraint is just a constraint like any other, special equality considerations

(for example: 3, 4 and 5 above) must be handled through wires. Wires are discussed below.

2.3 Non-Procedural Specification

We choose to represent objects and their relationships using networks of constraints [2,1,12,13]. Relation-

ships, therefore, are constraints to be enforced upon objects or nodes. One could envision the networks

as a first-order logical statement, but we do not take a "theorem proving" approach to automatic pro-

gramming.
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Figure 1: An Example Network

A simple example of a network is found in figure 1.2 The constraint type for addition connects to

three numeric objects (designated the augend, addend, and sum connections) and represents that the sum

of two of the numbers (augend and addend) equals the third (sum). Obviously, given the values of the

augend and addend nodes, the value of the sum node can be computed. This corresponds to one of the

laws for the addition constraint type. Less obviously, there are two more laws that describe computations

for the values of the augend and addend using the subtraction operator. Thus, the constraint describes the

relationship among the three nodes, not just a single computation. Because networks are non-directional,

it is necessary to indicate the input nodes and output nodes in order to make the specification complete.

Additionally, two nodes can be connected using wires. The semantics of a wire is that when one node

has a value, the other node has the same value. This formalism is used to express the special equal-

ity considerations mentioned previously. Wires can be directional (interstate wires) or non-directional

(intrastate wires). Interstate wires are discussed in the next section.

A network embodies a non-procedural specification of some behavior. Saying that the sum of two

numbers is a third number has an obvious computational meaning. On the other hand, saying that a

taxi cab ought to be yellow in no way determines how to go about making it yellow. Some series of

mechanisms must work to use this information in a reasonable way when trying to form an appropriate

computation. While it is true that every relationship to be used in synthesizing a program must be

transformable into a computation, the initial set of relationships does not necessarily form a computation.

The original specification is in a non-procedural form. Without the ability to deal with non-procedural

specifications, any system that claims to be an automatic programming system is, at best, an ultra-high

level compiler.

21n the figures throughout this paper, nodes will appear h hexagoms and constraints as eight-pointed stars.
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2.4 States

A state transition hierarchy organizes each network of constraints. The state transition hierarchy adds

structure to the specification of nodes and constraints by partitioning the nodes of the network of con-

straints into states. Nodes are said to "live" in a state. The state transition hierarchy merges two

common formalisms: finite state machines and hierarchies. Viewed as a hierarchy, states provide a rough

scoping mechanism. Viewed as a state (context) mechanism, states provide for the separation of mutually

inconsistent statements (non-monotonicity). Viewed as a transition diagram this formalism provides a

minimal specification of a program's gross flow of control.

One branch of the state hierarchy is active at any given time, which means that any relationship

between objects that are in the branch is true (i.e., the constraints among nodes are to be enforced).

Constraints themselves do not live in states. The values of objects can be passed from branch to branch

on interstate wires, which is the one of the special types of equality ISFI provides. From a practical

standpoint, interstate wires are connected to the objects that must be saved before switching contexts.

The state transition hierarchy has three important properties:

* Provides necessary vocabulary. The state transition diagram provides a way of specifying such

requirements as "Event A happens before event B."

* Provides necessary functionality. The ISFI system can derive scoping, control flow, and other

information from the state specification.

e Intuitive. State diagrams are reasonably easy to create and understand when specifying program-

ming problems.

The state transition hierarchy addresses three basic specification issues: side effect management, time

ordering, and environments, which are discussed below.

2.4.1 Side Effects Management

The state transition hierarchy provides ISFI with a simple but effective context mechanism. This mech-

anism is necessary because constraints express what is true at a given time (or in a given context).

The state transition hierarchy allows the specifier to introduce different contexts to separate mutually

inconsistent facts. For example, to specify that a traffic-light's color changes from red to green, we would

specify in one state that the color attribute had value red and in a later state that the color attribute

had value green (see figure 2). These two statements obviously conflict if asserted in the same context.

This topic is discussed in more detail below.



Figure 2: Specifying a Side Effect

2.4.2 Time Ordering and Control Constructs

The transitions of the state hierarchy provide the ability to specify a time order of changes. This is

a necessary component of any specification and is inherent in addressing change (the world before and

after).

In addition, the concepts of conditionals, recursions, and common subproblems seem basic to a

specification regardless of the abstraction level, and can be indicated using transitions. Time ordering

of this type is independent of change, but is nevertheless essential to a specification.

For example, to specify a decision point (branch) in the control flow, we would use three states (A,

B, and C) and two transitions (from A to B and from A to C). The two transitions would be enabled by

the two possible values of a boolean node in the state A. Higher numbers of branches can be obtained by

using different object classes for the decision node (e.g., traffic-light-colors = {red, green, yellow} would

give a three-way branch, see figure 3).

2.4.3 Environments

One basic rule that ISFI enforces for all specifications is that the computations of objects in a given state

can not depend upon objects in lower states in the hierarchy. This corresponds to the basic rules of lexical

scoping - one can only access up the hierarchy. In ISFI, we have adopted the model of block-structured

programs and lexical scoping for our representation of programs and their environments (see figure 4).
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Figure 3: Specifying a Decision Point

Figure 4: All Objects in Outlined States are Available in State X
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2.5 The Knowledge Bases

We encode knowledge in two knowledge bases: the domain knowledge base and the programming knowl-

edge base. Although the ISFI system does not make any strict categorization along these lines, the

distinction is useful.

2.5.1 The Domain Knowledge Base

The domain knowledge base is usually expressed in a group of networks that hold generic knowledge

about objects in the domain. Note the use of the principle that knowledge need not be declared many

times in order to be used many times. Each fact of domain knowledge is declared once and can be used

on demand in many places. The kinds of knowledge found here are:

For-all Knowledge: This is a fact that is true for all objects of a particular object class. Such rela-

tionships take the form, "For all objects of a certain class, such and such relationships hold." For

example, we might want to declare that All taxi cabs are yellow. This declaration is not a default

that can be overridden by other information lower in the AKO tree. This information is true for

all taxi cabs forever (unless we change our mind and the original declaration). Thus, if we make a

statement such as, All birds can fly, we had better mean it.

This is the only type of For-all knowledge that ISFI can currently accept. Noticeably lacking is the

ability to make statements such as, "For all numbers greater than one ... ," and "For all possible

traffic-light colors ... ," and "For all members of this set ..." This would be a natural and desirable

extension to the ISFI system.

Consequence of Side Effects: This is a special subset of the For-all knowledge about classes and is

used when a side effect is performed on an object of a given object class. These facts can be

stated as, "When a role of an object is changed, these relationships may need to be changed." For

example, the relationship between fahrenheit and celsius temperatures can be used to maintain the

celsius temperature whenever the fahrenheit temperature is changed.

Transformations: This is a set of IF-THEN rules where both the IF and the THEN parts are expressed

in the constraint network formalism. Having found the IF pattern in a specification network, the

THEN pattern can be added. Transformations are primarily useful in adding new computation

paths to a network (see Figure 6).

Constraint Types, Object Classes and Roles: ISFI treats all constraint types, object classes and

their roles equally; none are "built in". This fact insures that adding new constraint types or

domain objects and their attributes is a straightforward process.
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2.5.2 The Programming Knowledge Base

The programming knowledge includes:

Basic Operations: Basic operations are the language-independent descriptions of operations that ISFI

supports. This is easily expandable and includes, for example, addition of numbers and negation

of booleans.

Code Generators: Code generators encode the code string templates that implement the basic oper-

ations in each supported programming language. This also includes the string templates for im-

plementing the operations supported by building blocks and variables. For example, Lisp numbers

support addition with the string template "(PLUS <first-number> <second-number>)" and Lisp

variables support assignment statements with the string template "(SETQ <name> <value>)".

Representations and Implementations: Representations map from abstract object-classes to spe-

cific language-dependent implementations (data structures). In essence, representations state how

to implement a class of objects and many representations can be derived automatically.

Most of the programming knowledge is not specified in networks of constraints but is encoded in

the ISFI system either declaratively or procedurally depending upon its use. For example, the string

templates are encoded declaratively while the decisions used in introducing local variables are encoded

procedurally.

Only the primitive data types such as floating point numbers are hand-coded. The behavior of complex

data structures is specified in networks of constraints and used by ISFI to program other examples that

use the data structures. ISFI works in this way because most data structures can be modified in various

ways depending on how they are used. For example, a hash table has a number of options regarding the

hashing function and collision handling. As implemented in ISFI, data structures can be modified by

changing the specification of their behavior in the networks of constraints.

3 Mechanisms that Manipulate Relationships

Assuming a rich set of object classes and constraint types it is possible to create networks of constraints

that not only represent the domain knowledge but also specify the desired behavior of various programs

to be synthesized. It is up to the automatic programming system to use the specification networks as

the starting point for creating a program that exhibits the desired behavior.

If some computation path can be found from the input nodes to all of the output nodes, then it

is possible to generate code from the specification network. Construinf propagation is the mechanism

used to find such a path. However, specification networks may be incomplete in the sense that such a

computation path may not exist. The domain knowledge bases must be used in these cases. In fact, most
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of the mechanisms described in this section are used if the primary mechanism, constraint propagation,

fails. In addition, these mechanisms are used for other purposes such as deriving more efficient code. All

of the mechanisms are supervised by a control program [14] that decides which mechanism should be

used and how.

Most of ISFI's mechanisms deal with the networks of constraints. To enable a successful propagation,

the control program can heuristically identify the problem areas in the network and try adding knowledge

about some of the nodes. These mechanisms perform operations such as copying groups of nodes and

constraints from one network to another or simplifying the configuration in a given network.

3.1 Propagation

Propagation, ISFI's primary mechanism for dealing with networks of constraints, attempts to produce

computations for objects in some nodes given computations for objects in other nodes. Propagation

always starts at some set of nodes (such as inputs and constants) that have computations (also called

values) and attempts to find computations for other nodes until the process ca-i go no further. New

computations are derived from existing computations through the application of constraint laws. Note

that computations for side effects are generated in exactly the same way as computations for outputs.

Values in the nodes contain the computation information generated during propagation. Values

maintain dependency links to other values that reflect the chain of computations that leads to a given

value. The information stored in values is used in the eventual code generation.

Every constraint is an instance of some constraint type. Associated with the constraint type are

a number of laws that can be used by the constraint to compute some objects from others. That is,

constraint laws can be used to determine the value of a node based on the values of other nodes. Law

application is the primitive mechanism that propagation uses. When a constraint is considered, ISFI tries

to apply each of its laws in turn. Each law expresses how to construct values for certain output nodes,

given certain input nodes. In addition, it indicates which nodes are involved in a side effect. In general,

there can be many laws for each constraint type, given the various combinations of input, output, and

side effect connections. A particular law may not use some connections.

The application of a constraint law traces the following course. The first order of business is to

discover if all nodes involved with the law have values (output nodes may already have values, otherwise,

an empty value is created for them). The search for values is constrained in a number of ways. Most

notably, the accessing and computation of values in nodes follows a number of rules concerning the state

hierarchy. For example, the value of a (input) node can only be accessed when ISFI is "in" that node's

state or below it in the state hierarchy. The value of a (output) node can only be computed from the

node's state or above. A node's role descriptor can only be mutated from a state that is strictly below

the node's state.
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Figure 5: A Network After Constraint Propagation

After all these conditions are met for a constraint law, the algorithm frygment of the law is used to

determine what form the computations take in the output and mutation values. An algorithm fragment

declares what operations should be performed on the inputs to achieve the desired results and does

so without reference to how the values are implemented! For example, the addition operator may be

applied to numbers regardless of their precision; the sort operator may be applied to any linear sequence

of elements that supports sorting (array, linked list, binary tree, etc.). The input values for an operation

are updated to show that they were used in the computation.

At any time in the application of the law, a value may not be available or some condition may not

be met. Such a failure causes the law application to abort. This failure indicates that the current

propagation chain terminates. Most law applications do fail, usually due to unavailable input values.

Although, the goal of propagation is to find a value for all the output nodes, the process does not

necessarily terminate as soon as this has occurred. The most inexpensive computation is desired, where

expense is associated with the value, and based on the operations that it encompasses. There might

be other paths in the network from the input nodes to the output nodes that represent a cheaper

computation. Propagation must explore all paths in the network to assure that it has found the cheapest

path. For this reason, propagation terminates when the queue of constraint laws to apply is empty.

ISFI's propagation avoids combinatorial explosion by forward chaining only on successful chains. When

two chains meet, an evaluation of merit is performed that decides which chain should continue and in

this way the unnecessary chains die off quickly. Among other things, this prevents cycles from occurring

in the dependency graph that is built from the computation chains. All in all, enough computation paths

die out so that propagation does not grow unwieldy in large networks.

Figure 5 describes a network after constraint propagation has taken place. The input nodes are X

and Y and the output node is R-squared. Parenthesized expressions represent values.
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3.2 Inheritance

As mentioned previously, the domain knowledge base contains For-all facts about the various objects.

Inheritance is the mechanism that makes use of this type of knowledge. Given an object for which we

need more information, we can inherit the information from the object's class and from all the classes

above (superior to) that class. Inheritance is used to copy portions of network from the domain knowledge

base into the network current!y being solved. This use of inheritance is discussed in [9] and contrasts

with systems that use inheritance as defaults.

Inheritance needs to be a controlled activity. First, it is undesirable to have redundant information in

the specification. For example, if an object of class NON-NEGATIVE-INTEGER were already connected

to a constraint that declared it to be greater than or equal to zero, we would not want the information to

be repeated. Secondly, it may be undesirable to inherit all of the knowledge from all of the super-classes

before having some indication that the knowledge is needed. This problem is alleviated because ISFI can

inherit knowledge selectively, progressing up the class hierarchy only when necessary.

Additionally, as more and more nodes and constraints are copied into the network, they often form

some (fairly common) configurations that we call doublets. Given such configurations, ISFI can deduce

that certain nodes must contain the same value, and therefore can be merged. In this way, the network

can actually become smaller. Doublets are discussed in detail in Brown's thesis (1].

3.3 Transformations

In ISFI (and in other program synthesis systems [15,16]), a rule application mechanism transforms sets

of relationships with no computational interpretation into sets with such interpretations. The rules will

not look quite like those used in classical Al systems although they will still have two parts corresponding

to the hypothesis and consequence of classical rules. In this case, both parts of the rules are networks of

constraints with the meaning that if the hypothesis is present then the consequence can be inferred. An

example of a transformation is, Given two numbers A and B, if A+A=B then 2*A=B. In other words, we can

express such common and powerful rules as, Double negatives drop out (see Figure 6), and Multiplication

of integers can be expressed as addition.

Our system differs from most rule-based or transformation systems in that we never discard a rela-

tionship that still holds among the involved objects. For this reason, our form of transformation always

add relationships rather than replace them. There is no need to throw out the knowledge that A added

to itself equals B just because we also know that A multiplied by the number 2 is also equal to B.

Transformations, like inheritance, are used to copy domain knowledge in the form of networks from

one place to another. The hypothesis is a pattern network that is matched against the network in

which the rule is being applied. If the match is successful then the conclusion network is copied into
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Figure 6: An Example Transformation

the original network. This copying is done in exactly the same way that the copying is done for the

inheritance mechanism.

As with inheritance, the problems of applying transformations in a network center on finding nodes

that already exist and on avoiding doublets. Additionally, there may be states in both the pattern and

target networks making the matching process more complex. Finally, some transformation patterns can

contain "wild cards" that match network structure with certain attributes.

Transformations are primarily used to resolve propagation failures. This is accomplished by copying

the entire consequent network into the current network when the pattern specified by the antecedent

network is matched. In this way, new relationships are deduced from existing relationships in the network.

This has the effect that new computation paths are introduced into the network. In the case that a

computation path already existed, transformations can be used to introduce cheaper paths leading to a

better synthesized program.

Unlike the previous two mechanisms, transformation application can suffer from combinatorial explo-

sion. Since each transformation adds some fragment of network to the existing network, the number of

transformations that match grows with every successful application. To avoid forward chaining through

endless networks and transformation rules, ISFI needs to maintain some knowledge about what a given

transformation is likely to accomplish and then use a strategy component (discussed below) to decide

which transformations are most likely to achieve a given set of goals. For example, if propagation fails

because an output node can not be computed, then applying the "commutativity of addition" transfor-

mation should not be attempted because such an application can not cause any new nodes to become
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computable.

3.4 Side Effects and Consequences

Side effects in ISFI are represented as mutations. Our early formulation of mutations is discussed in

[17]. A mutation is defined by the node being mutated, the role descriptor, the node that represents the

contents of the role, and the operation type (insert or delete). In order to handle mutations successfully,

we assume system omniscience; the only changes for which the ISFI system is responsible are those that

the ISFI system causes. Most mutations appear in the synthesized code as data structure modifications

and I/O operations.

The hard problems involving side effects have always concerned managing the consequences and

timing of those side effects. Managing the consequences is classically known as the frame problem [18].

Until now the best solution to this problem lay in reason maintenance (19,201 but those solutions are

not easily applied because the ISFI system has the more strenuous task of predicting what relationships

will need to be maintained and writing a program that performs the maintenance when the actual data

becomes available. The ISFI system benefits by accessing the domain knowledge to limit the scope of

the potential change.

Our system detects and manages the consequences of a given side effect by considering the relation-

ships that are changed by the side effect. By our definition of a side effect, the only kind of relationship

that can change is that represented using roles. This limitation (of representation - not of expressive

power) is what makes the frame problem tractable. In ISFI, the frame problem may be stated as,

"Given some changes to the properties (roles) of some objects, what changes to the properties of other

objects need to be made to maintain consistency?" (see figure 7) Consistency is specified by some set of

constraints.

An example of tracking consequences can be found in the domain of military map display programs.

Given some object-classes ENEMY-AIRBASE, BOOLEAN, and DISPLAY-COLOR and some roles such

that ENEMY-AIRBASES have DISPLAY-COLORS and a TARGETED? property (a BOOLEAN), we can

state that the DISPLAY-COLOR depends upon whether the ENEMY-AIRBASE is targeted or not. With

this much knowledge available, suppose we ask the ISFI system to write a program to change the

TARGETED? property of an ENEMY-AIRBASE. When the program is written, ISFI must also find an

appropriate computation that changes the DISPLAY-COLOR to keep the set of relationships consistent.

The general scheme is that from a set of changing role values and from the relationships expressed in the

knowledge base, the automatic programming system generates a set of roles that may be affected and

forms an appropriate computation for each.

In ISFI, the problem of managing consequences boils down to collecting the needed constraints from

the domain knowledge base and copying them into the problem network. Normally, all constraints are
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Figure 7: Consequences of Inserting

interpreted as holding true; in this case, ISFI collects a set of constraints that must be made true. In order

to collect the constraints that must be enforced, ISFI must examine the role descriptors for necessary

and sufficient conditions. These are predicate nodes in the domain knowledge base that determine

an object's membership in the role of another object. Necessary and sufficient condition nodes have

the interpretation that when an object is added to the role of an object, all of that role's necessary

conditions become true. When an object is removed from the role, the role's sufficient conditions become

false. Necessary and sufficient condition nodes can be thought of as specifications of daemon behaviors

(when an event occurs, it may cause another event to occur also) but are actually non-procedural (when

a role relationship changes, enforce some other relationships). Expressing the necessary and sufficient

conditions in a logical form:

Rolel (Aasoc,, Memberi) V .. . V Rolem(Assocm, Memberm )

Rolem+ I (Assocm+ 1, Memberm+,) A .. . A Role. (Assoc., Member,,).

To find consequential mutations, an area of network around the necessary and sufficient condition

nodes in the domain knowledge base is copied into the problem network and the changing node values

are propagated in the network to trigger constraint laws that perform mutations. Any such laws that are

found are used in declaring new (consequential) mutations. In this way, the relationships directly deter-

mine the additional mutations that are necessary to maintain consistency. Of course, these consequences

are also mutations and may have further consequences.

This approach has two noticeable problems. First, a constraint that needs to have its relationship

enforced usually has a number of laws that claim to do so. One law may add objects to a role while another

may delete them. The two laws can lead us to conflicting sets of necessary and sufficient conditions to
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maintain. For example, suppose a boolean node is used to trigger a constraint with two laws that conflict

as described. If the boolean value is true, the first law is triggered; otherwise the second law is triggered.

The actual value of the boolean may not be known until the synthesized program is actually executed.

Thus, the synthesized program needs to be prepared for both possibilities. Since either possibility can

lead to more consequential mutations, the ISFI system must write a program that for every declared

change, walks a tree of consequential mutations with each branch based on the value of some node. In this

way, the ISFI system compiles special case truth maintenance code in every program whose specification

includes a mutation. Luckily, experience indicates that the trees are typically quite small and in many

situations the value of a node is a constant and ISFI can prune the tree at synthesis time.

The other problem with our scheme of mutations is much worse in theory but actually less of a problem

in practice. The potential problem arises because ISFI's condition nodes lead to sets of relationships

that may have no procedural interpretation. Because propagation can fail to find a computation path

through a section of network and because we rely on propagation paths to find constraints that need

to be enforced, our technique runs the risk of producing an incomplete set of consequences. Even using

the transformations, inheritance, and other mechanisms that introduce computation paths, we can never

guarantee that constraint consistency has been entirely restored or even that the system has exhausted

all reasonable inferences. Our experience indicates, however, that the user is not overly burdened in

augmenting the specification so that the system can find important consequences.

3.5 Complex Relationships

We want to group certain sets of relationships into a larger, more complex relationship. In this way,

we can build ever more complex relationships and create various levels of abstraction. This capability

is achieved using complex constraints. Complex constraints are defined using networks of constraints

so that a single constraint is used to embody an entire network of knowledge. There are at least five

different ways a complex constraint may be used.

The first is to copy the network that defines the complex constraint type into the network where the

constraint is being used. This technique is analogous to macro expansion and defines the semantics of

the complex constraint. Each of the other four techniques for using complex constraints must produce

programs with the same behavior as this technique.

The second technique is to plan the computations in the complex constraint network and then copy

over the part of the network that is needed for a particular application. This technique would be useful

when the complex constraint network is expressed non-procedurally (is missing a required computation

path). A suitable computation path could be found in the complex constraint network once and thus

avoid the tedious problem solving that would otherwise occur every time the constraint was used.

The third technique proceeds through finding a computation path and then finding consequential
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Figure 8: Using a Network to Define a Complex Constraint

mutations. We may choose to find all the consequential mutations that are indicated by the constraint's

network. However, we can not guarantee that we will find all of them. For example, a DISPLAY-OBJECT

constraint can not possibly know all the details of displaying all objects on all display devices. The

system must consider how the constraint is used each time it is used with a set of objects from different

classes.

Regardless of whether or not we handled consequences, we can choose to proceed to finding data

structures for the nodes in the constraint's network. In many cases, however, we would not want to

make data structure decisions until we knew how the constraint is used. For example, the nodes in an

application may already have data structure commitments. Any decisions we make about data structures

for the complex constraint must be consistent with those commitments. This is a good examp!e of the

trade-off between generality and economy of computation.

Finally, we can synthesize an entire sub-routine for each of the constraint's laws. For this technique,

the synthesized code that derives from the constraint law is just a function call. Note that even if the

constraint's laws are refined to this degree, we may still have some consequential mutations to find or

some data structures to include. Also, if the same constraint law is used by an example that demands

different data structures, ISFI must re-write the law to fit the new use. This is the only strategy that is

currently implemented.

An example of the use of a complex constraint can be found in a number of conversion programs.

For example, a program may need to convert a Cartesian coordinate pair (x, y) to the polar coordinate

pair (p, 0). Rather than specifying the relationships among the four variables everywhere needed, a
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complex constraint (call it COORDINATE-CONVERT) can be formed with the relationships expressed in

the constraints of its defining network. The necessary laws can then be written that compute each of the

variables from some combination of the others. Note that only a few relationships are needed because

each relationship can contribute in a number of computations. The fact that, "y = p * ain(8)" can be

used to compute any one of y, p, or 9 given the other two.3 The laws that are written can then be used

by propagation whenever a constraint of type COORDINATE-CONVERT is found in a network. Even

better, should we decide to express more reltionships among the four variables (assuming we had missed

one or more that make the computations more eloquent), we could now add them in the one network

and know that they could be used everywhere constraints of type COORDINATE-CONVERT appear (see

figure 8).

3.6 Overall Control

Overall control of the automatic programming system is handled by the Agendas [5) problem-solving

and planning mechanism (see figure 9). This mechanism has available a number of standard plans for

problem solving strategies, meta-plans for choosing the correct plans, an ability to make assumptions,

and replanning facilities for recovering from failures. Agendas were designed specifically for controlling

the ISFI system and later extended [21] and used in two applications [22,23]. Agendas work under the

assumption that all possible operators in a domain are known. For the ISFI domain, the operators are

the mechanisms such as propagation and transformation. The Agendas controller attempts to satisfy a

set of goals by selecting among the available operators. Agendas are not necessarily tied to any given

strategy (such as "best first," GPS, "hill climbing," etc.) for applying operators but uses metaplans

to represent various strategies. Another advantage of Agendas is that they support clear, declarative

definitions of strategies so that each strategy has easily recognized consequences.

As applied to the ISFI system, agendas attempt to satisfy four major goals in order: determine a rough

algorithm, construct data structures, compose a concrete algorithm, and generate code. Determining

and composing algorithms can both be accomplished by propagation. If propagation fails, the agendas

select other mechanisms that may enable propagation to succeed. Also, goals can have subgoals (e.g.,

expand or satisfy complex constraints before composing a concrete algorithm). Finally, some goals may

interfere with others. For example, the set of known data structures may not support the operations

required by the initial, rough algorithm. Thus, the second goal may cause the agendas mechanism to

backtrack and attempt to find a different algorithm.
3This is actually an oversimplification becamuse 0 is not unique for some values of y and r.
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3.7 Deriving Data Structures

ISFI needs to map the abstract objects to structures inside the computer. Real world objects may be

represented in the synthesized program as variant records, as linked lists, as vectors, or as other data

structures. Every real world object must be represented as some programming language (implementation)

object in order to participate in the operations derived from the constraints.

Constructing these representations generally consists of collecting some number of roles for an object

class and mapping those roles to various parts of a data structure. The process of finding suitable

mappings can get very complex, especially when considering ordering and indexing or when some roles

are either cluMtered or spread. Clustering combines different roles into the same field of a data structure

(e.g., the array size stored as the first element of the array). Spreading is when a given role occupies

various fields of the data structure (e.g., representing a role's index in a separate data structure from

the role's data). Also, some roles that could potentially be included in a given mapping may not be.

Determining which roles to use (and how) is a general design problem of deciding what attributes of a

given object are relevant to a particular program. For example, based on the computations in a program

to track drug smuggling, one could decide that the color of a fishing boat is not important (not referenced

by any computation) and may be omitted.

Consider objects of clas COLOR where we want to express three components (roles) of every color

- the red part, the blue part, and the green part. Obviously most programming languages do not have

data types called colors. It is possible, however, to build or use a data type already existing and call it
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Figure 10: Mapping Operations to Code

a color. One might choose, for example, to build colors out of arrays of length three where each element

holds one of the parts. Representations record such a decision.

With the mappings in place, we can map an operation on colors to an equivalent operation on arrays.

For example, accessing the red part of a color can be transformed to accessing the first element of the

array (see figure 10). Code is then produced that implements the operation in the programming language

for that data type. In this way, objects acquire the capabilities of the data types they are built on.

ISFI also allows an object to be represented in terms of other objects. Here, the mappings are set

up from the first object and its roles to the second object and its roles. Operations to be performed

on the first object are mapped to operations on the second object which must then map the operations

to somewhere else (either yet another object or a data type). In this way, objects can also gain the

capabilities of other objects.

As an example, we may model a star as a point on the celestial sphere and represent the star in ISFI

as a point in two dimensions. We may go on to represent the star's apparent motion as a vector. ISFI

knows that points can be represented as vectors so the stage is set to compute a new position of the star

merely by adding vectors - an operation ISFI knows how to implement.
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4 Code Generation

4.1 Building Blocks

The basic unit for code synthesis in ISFI is a building block. Building blocks contain the information that

makes the generation of code possible. Building blocks are the way-points between the state transition

hierarchy and the actual code. They not only provide a way to organize information, but are the

embodiment of ISFI's language independent capabilities.

Building block types represent the abstract control structures present in all programming languages

(conditionals, subproblems, iteration, sequence, etc.). For example, an iteration is the same whether

implemented using GOTO's, tail recursion, or highly structured WHILE-DO constructs. A tree of

building blocks, called the program structure tree is an abstract representation of control flow and block

structure that satisfies the specification. Because ours is a language independent model, the building

blocks and the program structure tree express the meaning of the specification in terms of the lowest

common denominator of the syntax and semantics of various programming languages. The building

blocks also act as back-pointers from the code strings to the specification and provide the explanation

facility with much of the needed information to generate useful explanations.

4.2 The Building Block Hierarchy

Building blocks are implemented using the object-oriented aspects of Symbolics Zetalisp [24]. Different

control construct types are organized in a hierarchy. The basic types of building blocks are:

sequence block: An abstraction for a sequence of statements and/or expressions that are ordered

according to data flow.

case block: An abstraction for conditionals; generalizing behavior of if-then-else statements and case

statements.

loop block: An abstraction of all iterative behavior.

program: An abstraction for a procedure.

break conditionals: Used to abstract the halt conditions of all iterations. Break conditionals must be

associated with loop blocks.

calling blocks: An abstraction for procedure calls.

For each language for which code is generated, there are language specific types of each of the building

block types (i.e., lisp-loop-block, c-program, etc.). In addition, various behaviors can be mixed into the
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Figure 11: Need to Re-establish Environments

building blocks of particular languages by using the facilities of multiple inheritance available in object-

oriented programming. For example, different languages allow different constructs to scope (declare)

variables. (Loop. can scope variables in Lisp, but they cannot in C). In this way, for a given target

language, ISFI is able to select only appropriate behaviors and organize them conveniently.

The information described in each building block includes: the variables to scope and assign, the side

effects that take place, and data flow information concerning computations local to the building block's

environment. This includes the inputs and outputs and a data flow graph.

4.3 Creating the Program Structure Tree

Our theory of code generation depends greatly upon the generation of the program structure tree (PST).

The program structure tree is essentially a distillation of the meaning of a specification. Subproblems

are discovered, commitments are made for control flow, and scoping environments are created. In this

way, what is implicit in the state hierarchy is made explicit.

Some commitments are obvious: decision points become case blocks, subproblerns can occur when

two paths in the state transition graph meet, etc. However, because of the freedom provided in our

model, the creation of scoping environments and the enforcement of consistency (for side effects) are not

trivial.

In the specification in Figure 11, the state C is not in the same environment (branch) as the state F.

The transition from C to F could cause an inconsistency if the correct environment is not re-established.
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Figure 12: Environments of the Decision Point and Clause are Unrelated

In the specification in Figure 12, the clatuses of a conditional are unrelated to the environment of the

decision point. This is a reasonable way to write a specification, but is contradictory to the semantics of

conditionals in most programming languages.

To create a program from the specification ISFI must make commitments to the exact control flow

and scoping environments. This means it must find an interpretation of the state transition hierarchy

that is complete and consistent. Once the behavior implicit in 0- state transition hierarchy has been

determined, ISFI can alter the scoping implied by the s~ecification by introducing new control flow

information.

How a program makes use of a sttte is expressed by state ssages. A state usage captures the

environment of part of the network specification. Finally, it is these state usages that are associated with

building blocks. State usages are composed primarily of state visitations. Three aspects of a state are

organized by a state visitation: the incoming and outgoing transitions and the state's location in the

hierarchy. A state visitation summarizes a way to "visit" the state. In other words, a visitation expresses

a single path through a state.

The first example above illustrates a situation where it is necessary to split a state. Splitting a state

into two or more state usages is necessary when a state has state visitations that are not homogeneous,

thus causing some inconsistency in the use of a state's environment. Homogeneous visitations are the

normal case and do not cause any inconsistencies. There are three reasons for an inconsistency:

9 Entering a state from different branches of the state hierarchy.
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" Using wires to import and/or export different objects' values.

" Non-equal sets of side effects.

Note that wires and side effects are associated with transitions into a state. The set of visitations is

partitioned according to these three factors so that each state usage is self-consistent.

From the state usages, ISFI derives the various control structures in the diagram. The inconsistencies

illustrated in the second example are handled at this time.

First, cycles in the graph identify the positions of loops. ISFI supports a notion of structured pro-

gramming so only cycles that have one entry point are considered loops. (Other cycles are treated as

recursive subproblems.) The state usage forming the entry point of a cycle is associated with a loop block

building block. All state usages that are exit points from the cycle are associated with break conditional

building blocks. The use of break-conditional blocks allows the introduction of multiple exit points in

loops.

Next, all decision points not involved in loops are associated with case block building blocks.

All remaining state usages with more than one incoming transition are associated with program

blocks, unless they are join points. A join point is the state usage where the paths from a conditional

meet or the destination of all transitions out of the loop. Calling blocks represent the callers of program

blocks and are not associated with any state usage. This not only allows us to organize the procedure

calling behavior, but also permits the graph from the state transition hierarchy to be transformed into

a program structure free. Traversing trees instead of graphs reduces the complexity of many algorithms

in code generation.

Finally, any remaining state usages are associated with sequence building blocks. A sequence building

block contains various operations whose time ordering is based solely on data flow information.

4.4 Variables

ISFI manages the use of several types of variables. As with building blocks, variables are organized into a

hierarchy of types using object-oriented techniques. In keeping with the spirit of language independence,

there are language specific types for each variable type (e.g., c-output-variable, lisp-transmission-variable,

etc.). This aids in the generation of code because various languages implement variable types differently.

For example, output variables (variables introduced to return values from procedure calls) need not exist

in Lisp, but they make the code of a C program more readable. Further, various languages support

different value passing abilities that require a fairly sophisticated, language dependent capability (e.g.,

Lisp allows values to be passed directly out of TF statements whereas Ada does not and needs to use

variables to make up the difference).
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The variables used to pas computations between the various contexts found in the specification are

called transmissiou variables. Local variables are used to avoid redundant computations.

4.4.1 Sharing Information Without Using the Hierarchy

The state hierarchy allows a specification to access objects lexically. All objects in ancestor states are

accessible, and can contribute to computations in descendent states. Objects in sibling states can not be

connected directly via constraints because they are in different contexts. The existence of a wire implies

that the computation must be saved before switching contexts. This activity appears in the generated

code as an assignment statement for a transmission variable. The variable is scoped in the generated

code in the environment that includes all contexts using the computation.

The sharing of computations becomes more complex when considering a state usage that corresponds

to a program block. Not only must we consider the computations associated with the wires (corre-

sponding nicely to formal and actual arguments of the subroutine), but the calling environment (which

appears in the program structure tree as a calling block) could differ radically from the subproblem's own

environment. Variables must be introduced to maintain the environment implicit in the specification.

4.4.2 Avoiding Redundant Computations

Each computation records its dependencies and the computations that depend on it. In this way, one

may easily construct a data flow graph. Finding redundant computations is one of the purposes of this

graph.

There are four ways that two computations can be equivalent:

* They are equal.

* Computations may be copied arbitrarily.

o Part-for-whole and whole-for-part degeneracies. Because all objects in ISFI are aggregates, some

computations are introduced when accessing the sole part of an object.

* The computations could be semantically equivalent (e.g., (y x (2+z)) is the same as (y x 2) +(y x z)).

Obviously, to spot such similarities in general is undecidable. ISFI identifies certain broad classes

of these similarities.

Except for those prohibited by side effects, all computations that are equivalent (or transitively equiva-

lent) in these ways are made to share variables.
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float A;
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end;"

Figure 13: Code Generation in C

4.5 Producing Code Strings

ISFI's implementation uses program building blocks, implementation objects, and variables to produce

code strings. These three kinds of objects are called coding-objects. Each coding-object produces code

strings by responding to certain messages. 4 We invested considerable effort to make this a straightfor-

ward affair even in the face of multiple target languages.

As stated above, every coding-object has a set of messages that it handles by producing code frag-

ments. For example, a variant record implementation object has the access-a-field-by-name message that

produces code to reference a field of a particular object implemented as a variant record. The particular

object and the name of the field (usually derived from the name of some role of the original object) are

passed in as arguments to this message. Similarly, variables can produce code to assign themselves to

a given value and case blocks can produce the code for each of their clauses by sending more messages.

This process is represented pictorially in figures 13 and 14. Messages names are prefixed with a colon

and generated code strings are in quotes. All other text represent coding objects.

In other words, ISFI derives object representations and operations to be performed and finally orders

and digests the rough sequences of operations in building blocks. At this point all the hard work is

done; one obtains code by sending a message to the top-level building block (which sends messages to

its variables, inferiors, etc.)

"We use the Symbolic Zetalisp object-oriented programming terminology in this section. Those unfamiliar with this

vocabulary can think of meang as generic functions, and sending messages as a generic function calls.
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Figure 14: Code Generation in Lisp

In reality, code fragments are more complex than simple character strings. Recalling that each code

string is created by sending a message to a coding-object with.certain arguments, ISFI can also annotate

the code with the object, message, and arguments. This annotation allows the system to trace the

production of code back to the coding-objects and operations. ISFI only reasons about the annotation,

never the character string itself. From coding-objects and operations, the system can then trace back

through the various mappings to specification-level objects and constraints to explain the code in terms

of the user's original statements. For example, some code and its annotation:

Code:' ' (plus B) " ,

Implementation Object: Number-Implementation

Abstract Object: Color-Peak-Frequency

Message: :prinitive-add

Arguments: numbers A, B

Explanation: Adding numbers A and B because the specification references the sum of the spectral

distributions of two colors.

5 Interface

The primary means of entering specifications for the ISFI system consists of using the text editor to

manually create and connect network constructs such as nodes, constraints, and wires. Not surprisingly,

the interface needs to do more than just accept specifications. One must be able to synthesize code,

examine the work of the various mechanisms, and review the network specification after it has been

entered. To better serve these purposes, a graphical interface was developed (25]. Note that this interface

was constructed for use by the system developers not by the eventual users (the system has never had
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any "pure" users). Thus, a much more complete ability to access the system must be provided than

merely editing specifications and receiving synthesized code.

In the Gist English Generator [26], an English paraphraser was introduced to aid in the understanding

and debugging of specifications. ISFI's graphical interface fulfills much the same purpose. By drawing

networks of constraints in the same spirit as the figures shown above (e.g., Figure 1), users benefit in that

having two means of examining a specification lends extra confidence that the specification will behave

as intended. It is our experience that one more easily assimilates the meaning of a set of relationships

by viewing a graph presentation than by viewing text. The use of the connectivity of the graph itself is

extremely helpful. It provides a quick and easy way to navigate through the specification. Questions, such

as, "how is this object changed," "what other objects is it related to," are easily answered by traversing

the graph. The graphical presentation also allows one to view only that part of the specification that one

feels is relevant at the moment. Further, the position of the nodes and constraints can be manipulated

so that related objects are closer while unrelated objects are farther apart. The graphical presentation

helps to reinforce the focus in a way that static text can not.

The ISFI interface is not limited to viewing networks of constraints. The interface also provides

capabilities for editing specifications, writing programs, invoking mechanisms manually, changing network

structure, delving into the knowledge bases, and viewing the synthesized code and code explanations.

Most of this is accomplished using a menu-driven command processor. Additional windows become visible

for special purposes such as viewing the several kinds of hierarchies ISFI maintains or for examining the

"before and after" nature of transformations. The KingKong [27] natural language interface has been

ported to the ISFI system and is used for question answering about the specifications and synthesized

code.

6 Real-Time Automatic Programming

The technical objectives for the FY87 automatic programming project included plans for addressing the

issues that arise when one attempts to produce real-time programs. However, after the first quarter

of the year it became apparent that despite the amount of research into so-called real-time programs

and multi-processing systems, there exists little agreement among researchers as to what constitutes a

real-time program, how to formalize the issues of multi-processing (or asynchronous behavior in general),

and, most importantly, how to synthesize programs that effectively utilize multi-processing environments.

Research into real-time programs was not as mature as we had believed.

Only two groups in the country have made any headway into synthesizing real-time programs.

Barstow [28] has presented a method of implementing programs based on the theory of stream processing.

The presented results of this work are linited in the application domain and extremely specialized in

29



the type of programs produced. Green, King, et al [29] regularly report on their theories of concurrent

program synthesis. While designed to be widely applicable, their results have only been tested in a

limited setting. Both groups fall short on the level of specification spectrum, although Green, King, et

al, are working seriously on raising that level.

Our primary result in using the ISFI system to address real-time (multi-processing) software is that

we have begun to define the areas of interest and challenge. The remainder of this section details what

we feel would be necessary in order to make ISFI synthesize real-time programs. For the most part,

real-time programs are addressed in terms of their execution time. The same statements could be made

concerning memory requirements.

6.1 Definitions

The execution time of a program segment is the time measured by a standard time clock (not, for

example, by CPU instruction cycles) between the beginning and end of the execution of the program

segment. While this sounds trivially straightforward, note that this is not the same as the time the

program segment spent actually executing. Much of the execution time of programs written on current

hardware is consumed in waiting for other activities to finish. The execution time of a program segment

must include activities such as waiting for a virtual memory system to page in a necessary block of

memory, waiting to resume after interruption by other programs, waiting for the completion of an I/O

operation to a user, tape drive, etc.

A real-time program segment is a segment of executable code that has a guaranteed maximum

execution time. Typically, only some segments of a program are so guaranteed because many program

actions, such as waiting for a user to respond to a query, have no upper bound on their running time.

For this reason, the truly time-critical sections of software are usually protected from interrupts, user

input, and other unpredictable disturbances.

A process includes the program and the data required to execute the program. Some data may reside

in several processes. A process is "active" if it is ready to run, i.e., has all necessary data and programs

available. A proem is "running" if the process' program is currently utilizing the CPU. The execution

interval of a proces is that period of time during which the process is running.

A multi-processing environment is a computer configuration (hardware and software) that allows

more than one process to be active at the same time. Parallel processor environments are a distinguished

subset of multi-processing environments because several processes may be running at the same time.

6.2 Specifying programs in ISFI

A real-time program specification in the ISFI system is nearly identical to the specifications for the

types of programs that 1SF! currently addresses. The only change is that the user must have some way
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of specifying the maximum execution time (or memory utilization) of the program. Presumably this

addition could be outside the usual context of objects and relationships that programs address.

By contrast, the specification of a multi-processing program (or set of programs) taken on a whole

new aspect. This is because ISFI supports the specification of program behavior where program behavior

is limited to manipulating the objects that the program can reference. In specifying multi-processing

behavior, we must now consider the processes as objects and broaden our vocabulary to allow programs to

manipulate processes. Specifically, ISFI must support specifications of the relationships among processes

as they change over time. With the level of complexity and detail that this entails, ISFI must provide

a more sophisticated means of specification than the "just one more consideration" approach mentioned

in the previous paragraph.

Relationships among processes involve passing data, sharing data, relative execution intervals, and

parent/offspring relations. For example, a process may provide data to another process either through

parameter or message passing. Similarly, a process may preempt another process, preventing it from

running, or create a new process and set it on its way. Since the relationships among processes vary over

time, ISFI's context mechanism (states) must also be adapted to this new discussion.

Since ISFI represents relationships in networks of constraints, one envisions creating separate networks

for specifying the relationships among the objects that the program manipulates and for specifying the

relationships among the processes. However, the two specifications are not independent with respect to

their state diagrams. For example, a process may become inactive (represented by a transition in the

processes' state diagram) after the final state of the program's state diagram has been reached. In other

words, the two state diagrams (at least) need to communicate.

We considered a number of ways that this communication might be achieved. We explored the idea

that transitions among the states could carry additional information such as enabling interrupts, waiting

for events, occurring periodically within a certain time, etc. We explored partitioning the state hierarchy

into various sections that could have attributes (e.g., a set of states might represent a process). Keeping

in mind that whatever communication scheme we arrive at must support code synthesis, no scheme

presented itself that was relatively simple and had a clear semantics of program specification.

In general, what is needed is a way of grouping together networks of constraints and expressing

relationships between the networks. The progress made on this issue through the year was primarily to

define the issue. Future work should explore more concrete methods for addressing these communication

* needs.

6.3 Necessities for Synthesizing Code

ISFI achieves its success in code synthesis by relying on the common properties of a large group of

programming languages. In this way, the same program can be written in various programming languages
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by first mapping into an internal representation of the program and then producing code from the

internal representation. For example, the relationship stating that certain words were present on a

monitor's screen could be enforced by producing an operation that would place the words on the screen.

This operation is represented precisely as stated ("Place text on monitor's screen") in the internal

representation. For a particular programming language and monitor this operation may be translated

as, "Print text on monitor," (if the language directly supports the operation we need) or as, "send

'draw-text' message to monitor," or even as, "store ASCII characters at memory location 32516."

We had envisioned much the same arrangement for carrying out the operations of a multi-processing

environment. Example operations are, "Disable interrupts," "wait for event," and "provide data to

other process." The problem with adopting this approach is that, unlike the operations mentioned

above, there are very few generalized operations to apply in the multi-processing environments. That is,

the internal representation of the operations would not be far removed from those actually understood

by the particular environments. Of the set of operations that are most commonly discussed in the

multi-processing domain, most multi-processing environments support only a subset.

By way of analogy, suppose that our target environment does not directly support the "place text

on monitor's screen" operation. With so little generality to draw upon, chances are that our target

environment will also not support the other two operations either. This burdens us with the much

harder problem of finding conversions between operations that are not very much alike. For example, we

may need to use polling techniques to implement the "wait for event" operation. However, polling will

affect the scheduling of all involved processes. Some other process may need to "disable interrupts" for

a time and this will not automatically work in a polling strategy. The ISFI system would somehow have

to provide not only the polling scheduler but the modification that allowed one process to monopolize

the processor for a given time. In other words, to be most general, ISFI would have to augment the

operating system itself.

The point is that we have suddenly stepped into a much messier situation where we can not make use

of strategies that have worked in the past. We discovered this unsettling situation only upon attempting

to apply our proven methods. Instead of translating general operations to those supplied by a given

programming language, we now face the task of translating specific capabilities intended to achieve

certain goals into equally specific operations created with other goals in mind. Certainly, any given

strategy for a given environment can be produced but the combinations of strategies and environments

is overwhelming.

6.4 Rebuttal

Through the year, we considered several alternate strategies for directing the research being done. The

main concepts are presented below with the reasons why we rejected them.
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e Reduce the insistence on producing code for various target languages and operating systems. Pro-

vide more power over a narrower scope.

The Air Force, MITRE, industry, and others all produce software in a variety of environments.

Limiting ourselves to a single language, running in a single system, would severely decrease the

value of our work. This is especially true when one considers the possible target languages and

environments. Using the language C in Unix is the closest thing to a universal environment and,

as such, would not be so terrible. DOD, though, has mandated the use of Ada without reference to

operating system. This mandate makes one hesitant to pursue the Unix environment whereas Ada's

tasking capabilities are extremely lacking in the power to carry out complex tasking behaviors.

Neither possibility begins to address the number of special hardware configurations that the Air

Force regularly pursues where no operating system to speak of is available (e.g., JTIDS secure voice

digital radio).

e Lower the level of specification.

The automatic programming community recognizes a spectrum of specification levels ranging from

machine code through high-level programming languages (Lisp, C, Ada) and onward to abstract

specifications of behavior. It is at this high end that the ISFI system accepts specification, taking

on the burden of translating to less natural, less general, more concrete specifications known as

code. Although nearly every automatic programming effort strives toward the high end of the

spectrum, most begin lower for the sake of near-term results.

We chose not to pursue this strategy for two reasons. First, it would reduce the ISFI automatic

programming system to the level of a programmer's aid or even to the level of "just another

programming language" and, again, substantially limit the value of our research work. Secondly,

even this strategy for achieving a near-term payoff at the expense of the more theoretical work

could not be completed in less than several years regardless of how far we were willing to lower the

level of abstraction. In other words, this strategy would only be appropriate for a moderate range

program that was interested in building a robust working system for production use.

e Give up or reduce the requirement of an internal representation of operations to be performed.

Basically, this strategy would require that the common internal representation be made more

abstract rather than abandon it. Behaviors would be the common ground rather than operations.

For example, the notion of "execute until interrupted" could be implemented in the context of

most of the more concrete strategies that are directly implementable (polling strategies, prioritized

interruption schemes, even Ada's tasking capabilities).

In the long view, and assuming no one develops a general theory of multi-processing that is compat-

ible with our needs, this is definitely the solution to seek. There is no insurmountable obstacle to
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progress in this direction. It does, though, require a major, high level revision of the ISFI system's

method of program synthesis. This belief is contrary to those held when proposing this project.

Though this last option progresses along a desirable course, it amounts to producing the general

theory that is currently lacking in the computer community. Such a result, already widely sought,

could only come from of an intensive, multi-year effort with clearly defined goals. Only near the

successful conclusion of such work would it be appropriate to begin the true automatic programming

work. Certainly, many unforeseen issues will continue to appear.

7 Related Research

There exists a large body of automatic programming literature which the ISFI project has drawn upon.

Both Steele [12] and Borning [13] investigate the uses of constraint languages for knowledge represen-

tation. In both cases, the intent is to "interpret" the networks rather than to "compile" them as ISFI

does. ISFI also treats the notion of context differently from either.

We share the view presented by Balzer [4] that the most important phase of software production is

the maintenance phase. However, we do not support symbolic execution of specifications as presented by

Cohen [30]. In [30], symbolic execution was presented as a way to perform rapid prototyping without fully

synthesizing the specified program. Since we believe it possible to automate most of the programming

details, we prefer to address rapid prototyping by synthesizing complete programs from partial specifi-

cations. In other words, wc ,, ,-ie the same goal of letting the user examine his incomplete specification

"in action" but with t.e , o em more able to provide complete programs.

Our work in rec ,vering from propagation failures by bringing more knowledge to bear resembles both

the work by Green [31] and Barstow [32]. Barstow argues that a wealth of domain dependent knowledge

must be uped to synthesize good programs. We agree but further believe that a general set of mechanisms

can make use of specialized knowledge from a number of domains. The work described by Pressburger [33]

begins with an advanced programming language and continues to build more "non-procedural" concepts

into the language (e.g., logic specifications, the MAINTAIN statement). Much of its non-procedurality is

resolved by bounding set memberships and has a different flavor from the non-procedural specifications

found in ISFI.

ISFI differs from other automatic programming systems in using separate high and low level repre-

sentations of programs. This distinction facilitates target language independence. The more common

approach uses a single "wide-spectrum" representation of the program being produced. Most researchers

have emphasized the problems of algorithm synthesis and data structure selection over the issues of code

generation (e.g., [16]). The ISFI project is equally concerned with both algorithm and data structure

issues. ISFI's program structure tree resembles the Program Apprentice's plans (34] in attempting to
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describe common programming constructs rather than the "first principles" (e.g., goto, return, address

nemory location) description of many systems. Barstow [32] briefly mentions the need to create actual

source code from the algorithmic description but implies that because the representation of the program

follows so closely the conventions of the programming language, the translation is trivially straight-

forward. Similarly, Kant [35] develops the program down to the fine details with no break between

committing to an algorithm and improving it in "small" ways. In ISFI, due to the requirements of

language independence, the process is not as simple. However, the work in [36] is sufficiently general

that it addresses many of the issues the ISFI system has faced. Comparisons of our code generator can

be made to compiler technology [37]. These are not entirely appropriate since compilers seek to create

machine-specific program structure from text while code synthesis seeks to generate text from abstract

program structure.

8 Conclusion

The problems implicit in describing multi-processing behavior in such a way that one could automatically

synthesize real-time program code are much harder and less well understood than we realized. Future

programs should have modest, well defined goals and expect to realize those goals only over relatively

long periods.

In lieu of concrete results in the real-time domain, we spent considerable time this year working on

making ISFI a robust system. Producing code uniformly in a variety of programming languages is one

of the system's strongest results. This was enabled by the design and implementation of a new code

generator for ISFI. We feel that the system is now in an excellent state to continue research in the future.
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